Computational >
LingUiStiCS CSC 2501/ 485

Fall 2015

2. Introduction to
syntax and parsing

Frank Rudzicz
Toronto Rehabilitation Institute-UHN; and
Department of Computer Science, University of Toronto

Reading: Jurafsky & Martin: 5.0-1, 12.0-12.3.3, 12.3.7, [13.1-2].
Bird et al: 8.0—4.
Copyright © 2015 Frank Rudzicz,

Graeme Hirst, and Suzanne
Stevenson. All rights reserved.

f; ..

ov’

enxes the ,

s. 5 2D 'ﬂ

ﬁm@ peeela X

ra,Wm 55

essag@u

.
.
S
4
Bey -
’é»

.
4},'
>
.
I3 :"‘;
4
. -
.

()) o~ pALY S y° ' : '~/('Z’_/ »
..J TR, .'_:.‘:’, :"C?’(‘}‘ .
' gme your ancestor o
S e r);":' "Tl-'-"i""" :
. ’ 3" VR A e v ’
WantEd«t@ Ieave the
/,,.," i 14 i A otk g - o =

Ry

IDEOGRAM

PICTOGRAMS

] d z _ A e e O F A i el ey — -
| ¥ . % > g PR e = '.v.')'a".vr e -
{ - : o s~ e - -

) - -

— - - .. o -

Ancient Egyptian Demotic (c. 650 BCE)
(c. 3000 BCE) g * Many writers
* Few writers o G * Papyrus sheets
* Stone tablets : { * More purposes (e.g., e
* Many (>1500) symbols E = 4 recipes, contracts)

representing ideas (e.g., B o4 * Fewer symbols
apple) ‘, % °* Higher proportionof F
» Afew (~140) symbols Fai @ symbols representing
representing sounds (e.g. P i® = sounds
gah) LT
w et

Writing systems
* Logographic: Symbols refer to ideas.
* Phonographic: Symbols refer to sounds.

* English carries logographic heritage.

((alph” “bet” ((kaf” ((mem7’ ((en77
(ox) (house) (palm) (water) (eye)

Proto-Sinaitic

AN >
O

Cyrillic

2 (1
e X 3 Y " O 9

cw.alents

lences of words or phonemes.
the room is full of milkmen, some of whom are very old.

i luwl o m/

horrid
G \ /hh

room fu‘ll\‘/ Sty "
& r

[ao/
antagonist empty

‘ -

[ae/
™ These are defined only through contrasts with other objects

_...‘ |
.y - - -
SO | .
\ oV A" S d
: : 5 - P . .
/ > "“ . . .
Sl LA
o TN) 7
.
! - . o3 :
N PN o o .5 :

d @ SaQussure (‘father of modern linguistics’)

I 3P it

1 ,. ~
> H ' Pl B
= \. »
A

ST D &

L
.

AT

—— |

gaussure

¢ sign’

signified

signifier

mgmstlcs

between signifier and signified is arbitrary.
d we call it ‘cat’ and not ‘chat’? Convention. Society.

pa rol @*ndlwdual use) from ‘langue’ (system).

synch n. a snapshot of language use in time and place vs.
digchrony: n. how a language evolves over time.

®
.

Sytagme: n. how words are aligned in a sequence linear sequence. =

an’t swdp any word in this sentence. e

You'can’ ord any in swap sentence. %8,

) %:.’ ‘1

> o R

paradigm: n. how words can be replaced some of the time. 0
| like turtles. The turtle walked. |

| like salmon. The salmon walked.

Syntactic structure 1

= Syntax:
® The combinatorial structure of words.

= How words can be hierarchically organized into
phrases (e.g., [that weasel], [snagged the bee]), and
sentences (e.g., [that weasel snagged the bee]).

Syntactic structure

The cat hunted the squirrel living in the tree with
persistence.

| [The cat]
[hunted [the squirrel [living [in [the tree] |] |
‘with [persistence] | | |

Syntactic structure 2

The cat hunted the squirrel living in the tree with

persistence.

A /S A

The cat hunted
/\/\ with

the squirrel living
in \ persistence
|

the tree

Syntactic structure

The cat hunted the squirrel living in the tree with
persistence.

S
/\ J\‘7

NP
DET N PP
| | | /\ N
The cat hunted NP S P NP
A v pp ‘h
DET N wit
o souirel ving § NP N
the squirrel livin
1 & | /T

in DET N persistence

the tree

12

Syntactic structure 3

= Goal: meaning, interpretation, semantics.

= So why do we care about syntax?

13

Grammars and parsing

= Grammar:
= Formal specification of allowable structures.

= Knowledge

= Representation
= Parsing:

= Analysis of string of words to determine the structure assigned by
grammar.

= Algorithm

™ Process

14

Using grammar to
capture structure

= \lain issues:

= Which words are grouped together into a phrase.

= How words within a phrase relate to a common theme
(the head of the phrase).

= How different phrases are related to each other.

= Use grammar to encode meaningful relations.

15

Good and bad grammars

= Many possible grammars for any natural language.

= Some are better than others.

™ Desiderata (n.pl. things that are desired).
= Faithfulness to details of language.
= Economy of description.
= Reflects linguistic intuition.

= Efficiency of parsing.

16

Elements of grammar

= Primitives: lexical categories or parts of speech.

™ EFac

™ EFac

N word-type is a member of one or more.

n word-token is an instance of exactly one.

= Categories are open or closed to new words.

= Ejght main categories, many subcategories.

e Sexen

Twenty-three

17

Parts of speech 1

= Nouns: denote an object, a concept, a place, ...
= Count nouns: dog, spleen, Band-Aid, ...
= Vlass nouns: water, wheat, ...

= Proper nouns: Shanaenae, Toronto, ...

= Pronouns: he, she, you, |, they, ...

= Adjectives: denote an attribute of the
denotation of a noun.
= Extensional: pink, furry, ...
= Measure: big, ...
= Intensional: former, alleged, ...

18

Parts of speech 2

= Determiners, articles: specify certain attributes of the
denotation of a noun that are grammatically relevant.

= the, a, some, ...
= Verbs: predicates, denote an action or a state.

= Intransitive: sleep, die, ...
= Transitive: eat, Kiss, ...
= Bi-transitive: give, sell, ...

= Copula: be, feel, become, ...

19

Parts of speech 3

= Adverbs: denote an attribute of the denotation
of a predicate.
= Time and place: today, there, now, ...
= Manner: happily, furtively, ...

= Prepositions: relate two phrases with a
location, direction, manner, etc.

= up, at, with, in front of, before, ...
= X “this is the kind of B.S. | won’t put up with”
= v “this is the kind of B.S. up with which | will not put”

20

Parts of speech 4

= Conjunctions: combine two clauses or phrases:

= Coordinating conjunctions: and, or
= “the sound and the fury”

= Subordinating conjunctions: but, while, ...

= [nterjections: stand-alone exclamations.

= um, wow, oh dear, balderdash, crikey, ...

21

Elements of grammar

= Combinations:

= Phrase: a hierarchical grouping of words and phrases.
= Clause: a grouping that includes a verb phrase at its top level.

= Sentence: a grouping of one or more clauses.

= Can be represented by tree or by labelled bracketing.

= Terminology: A constituent is any well-formed
element (word, phrase, or clause).

22

Types of phrase 2

= Noun phrase (NP):
= g mouse
™ mice
= the handsome marmot
= the handsome marmot on the roof

= Verb phrase (VP):
= Stepped lightly
= quickly gave the Telefunken U4y to Mary

23

Types of phrase 2

= Adjective phrase (AP):
= green
= proud of Kyle
= very happy that you went

= Prepositional phrase (PP):
™ in the sink
= without feathers
= gstride the donkey

24

Clauses and sentences 1

= Clauses:
= Ross remarked upon Nadia’s dexterity
= to become a millionaire by the age of 30
= that her mother had lent her for the banquet

= Sentences:
= Ross remarked upon Nadia’s dexterity.
= Nathan wants to become a millionaire by the age of 30.
= Nadia rode the donkey that her mother had lent her for the
banquet.
= The handsome marmot on the roof.

25

Clauses and sentences 2

= Clauses may act as noun phrases:
= To become a millionaire by the age of 30
is what Ross wants.
= Nadia riding her donkey is a spectacular sight.
= Ross discovered that Nadia had been feeding his
truffles to the donkey.

20

The structure of an
idealized phrase

XP— 7P X YP
XP
| PN
subjector __, 7P X YP
pre-modifier | \

head — xxxx object, complement or
word post-modifier, adjunct

27

Example phrases

ADV ADV

| \/\ | I/\/\

very happy thatyou went quickly go tothestore with Maya

/I\

AUX

Kim will go

28

Formal definition of a CFG

= A context-free grammar (CFG) is a quadruple
G=(Vy,Vn P, S), where

= V. is a finite set of terminal symbols.
=V, is a finite set of non-terminal symbols.

=P s a finite set of production rules of the form
A—a
where A € Vs and a is a sequence of symbols in
(Vn U Vt)*.
=S € Vh is the start symbol.

29

Terminology

= Non-terminal (NT):

A symbol that occurs on the left-hand side (LHS) of some rule.
= Terminal (T):

A symbol that never occurs on the LHs of a rule.
= Start symbol:

A specially-designated NT that must be the root of any tree derived
from the grammar.

In our grammars, it is usually S for sentence.

30

A simple grammar

S=S, P={ s —nNpvP

NP — Det N
NP — Det Adj N Vi and Vn can be
NP — NP PP inferred from the
production rules.
VP —V
VP —V NP
The lexicon:
PP —P NP .
In practice, a sep-
" Det — the|a|an arate data structure
Lexical categories: Adj — old | red | happy | ...

NT’s that rewrite as { N —dog|park|statue | contumely | run|...
asingle T.

V. —saw | ate | run | disdained | ...

P —in|to|on]|under|with]... }

Parsing 1

= Parsing: Determining the structure of a sequence of words,
given a grammar.

= Which grammar rules should be used?

= To which symbols (words [terminals and nodes [non-terminals) should
each rule apply?

32

Parsing 2

= [nput:
= A context-free grammar.

= A sequence of words
Time flies like an arrow

or, more precisely, of sets of parts of speech.

fnoun,verb} {noun,verb} {verb,prep} {det} {noun}

"™ Process:

" Working from left to right, guess how each word fits in.

33

Parsing 3

= |f a guess leads to failure (parse is stymied),
back up to a choice point and try a different guess.

= Backtracking, non-determinism.
= At each guess, must save state of parse on a stack.

= (Or, explore in parallel.)

= Want to guess right:

= Order of preference for rules.

34

Parsing 4

= Parsing can be formulated as a search problem.

= Top-down.

= Bottom-up.

35

Top-down parsing 1

= Top-down or rule-directed parsing:
““Can | take these rules and match them to this
input?”
= [nitial goal is an S.

= Repeatedly look for rules that decompose /expand
current goals and give new goals.
E.g., goal of S may decompose to goals NP and VP.

= Eventually get to goals that look at input.
E.g., goal of NP may decompose to det or noun.

= Succeed iff entire input stream is accounted for as S.

36

Top-down parsing 2

= Example: A recursive descent parser.

>>> nltk.app.rdparser ()
= Operations on leftmost frontier node:
= Expand it.

= Match it to the next input word.

37

Recursive Descent Parser Application — [] >

File Edit Apply View Animate Help

Available Expansions -

S = NP VP
NP -= Det N PP

MNP -= Det N

VP =V NP PP r\\ ﬁﬁp PP
VP =V NP

PP -=P NP |

MNP -=1 mian
Det-=the
Det-="a

M -="man

M -="park

M -="dog

M -=telescope
V-="ate

SdwW the dog SAW a
11 CTTTTTTTTTTTTTTTTmTTTTTmmm T
under '

with 4] ﬂ

Last Operation: | Expand: M -="'man’

P -
P -
P -

LT T T)

Stepl Aut-nstepl I_El-[pandl Matchl [_!acl:tmcl:l

Top-down parsing 3

= Choice of next operation (in NLTK demo):
= [fit’s a terminal, try matching it to input.

= |f it’s a non-terminal, try expanding with first-listed untried rule for that non-terminal.

39

Bottom-up parsing 1

= Bottom-up or data-directed parsing:
““Can | take this input and match it to these rules?”
= Try to find rules that match a possible PoS of the input words ...
= ... and then rules that match the constituents thus formed.

= Succeed iff the entire input is eventually matched to an S.

40

Bottom-up parsing 2

= Example: A shift-reduce parser.
>>> nltk.app.srparser ()

= Operations:

= Shift next input word onto stack.

= Match the top n elements of stack to RHs of rule, reduce them to LHs.

41

Shift Reduce Parser Application — [>
File Edit Apply View Animate Help

Available Reductions Stack Remaining Text :I
~[[s=nPvP - -
NP in the park with a statue

NP-=DetN feeegperoee oo g m e mm e e OIS PEATK W 2 STAULE
NP = NP PP N\ T /\

o Det N saw Det
VF -=VF PP | | | |

VP =V MNP PP my dog =
VP =V MNP
FP =P MNP
MNP =
Det -= the
Det-="3
M -="man
V-="saw
P -="n
P -="with
M -="park
M -="dog
M -="statue

v | Det-="my 4] -]

Last Operation: |Reduce: MNP -=Det N

man

!iep‘ﬁhﬁt‘ﬁeduce‘ﬂnﬂnl

42

Bottom-up parsing 3

= Choice of next operation (in NLTK demo):

= Always prefer reduction to shifting.

= Choose the first-listed reduction that applies.

= Choice of next operation (in real life):

= Always prefer reduction to shifting for words, but not necessarily for larger
constituents.

43

Problems

= Neither top-down nor bottom-up search exploits
properties of CFG rules.

= Problems:

= Recomputation of constituents.

= Recomputation of common prefixes.

= Solution: Keep track of:

= Completed constituents.

= Partial matches of rules.

44

